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Wolbachia is a group of obligatory intracellular gram-negative bacteria. This bacterium
is responsible for manipulation of host reproduction in many arthropod species and involved in
embryonic and larval development, adult female fertility, and survival in filarial nematode. The
applied biology of Wolbachia and modification of pest and vector species using Wolbachia
have been studied in order to suppress or modify natural populations. In addition, Wolbachia
has been used as a novel chemotherapeutic target for filariasis control program. This article
reviews the biology of Wolbachia in arthropods and filarial nematodes, including recent advance
and future directions of using Wolbachia as a target for vector populations control and filariasis

drug target.
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Objectives :
1. To understand the biology of Wolbachia in arthropods as well as in filarial nematodes:

2.To report the recent advance and future direction of Wolbachia studies and researches.
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Wolbachia is a genus of the class
Alphaproteobacteria and belongs to the order
Rickettsiales. These gram-negative intracellular
bacteria are found widespread in arthropods as well
as filarial nematodes."™ Based on the 16S rDNA gene
and the protein-coding gene (groEL) sequence
analysis, it has been organized into the family
Anaplasmataceae which also includes all species of
the genera Ehrlichia, Anaplasma, Cowdria, and

Neorickettsia.

In contrast to members of the family
Rickettsiaceae, which grow in the cytoplasm or
nucleus of their eukaryotic host cells, members of the
Anaplasmataceae family replicate while enclosed in
a eukaryotic host cell membrane-derived vacuole.

In the absence of a formal nomenclatural
system, the Wolbachia community currently refers to
the different lineages as “supergroups”. ©1n addition,
the species name, Wolbachia pipientis, remains single
until new data are generated in different research
areas (e.g., comparative genomics, molecular
phylogenetics, and screening for Wolbachia in
new hosts). The DNA-sequence-based methods,
including phylogenetic analysis based on 16S rDNA,
dnaA, ftsZ, gltA, groEL and wsp genes have been
employed for taxonomic classification. © 7 ¢ At
present, 11 taxonomic supergroups are described
for the genus Wolbachia by their places in molecular
phylogenies. These 11 supergroups are labeled A-K
alphabetically which include A and B found in various
arthropods, C (Onchocerca spp. and Dirofilaria spp.)
and D (Wuchereria bancrofti, Brugia spp., and
Litomosoides spp.) are restricted to filarial nematodes,
E containing Wolbachia from springtails (Folsomia
candida), F containing Wolbachia from termites

(Kalotermes flavicollis and Microcerotermes spp.),
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weevils (Rhinocyllus conicus), and the filarial nematode
Mansonella ozzardi, and G and H found in Wolbachia
from Australian spiders and the Pacific dampwood
termites (Zootermopsis angusticollis and Z.

23651 The more recently

nevadensis), respectively. (
proposed supergroups, |, J, and K, are containing
Wolbachia from cat flea (Ctenocephalides felis), filarial
nematode (Dipetalonema gracile), and spider mite

(Bryobia spp.), respectively. '

Insect Wolbachia: reproductive bacterial parasites of
arthropods

In 1924s, intracellular bacteria were first
reported as Rickettsia-like microorganisms,
within the ovaries and testes of the mosquito
Culex pipiens by Hertig and Wolbach. These
bacteria were subsequently named Wolbachia
pipientis. “* Phylogenies based on 16S rDNA
sequences have confirmed that morphological
similarities to the Rickettsiae are based on phylogenetic

"9 1t is estimated that these bacteria

relatedness.
infect at least 20% of all insect species. "® Recently,
data reported from a beta binomial model suggest that
Wolbachia-infected species are estimated to be 66%,
and within one species the frequency of Wolbachia
infection is either very high (>90%) or very low (<10%).
" Infections by Wolbachia of the reproductive tissues
of arthropods are transmitted maternally from infected
females to their progeny via the egg cytoplasm, and
have evolved to manipulate host reproduction. "

Research interest in Wolbachia was initially
triggered when it was discovered that this organism
can cause several kinds of reproductive change in

(1, 19

arthropod reproduction. ' These reproductive

manipulations include: (1) inducing embryonic lethality
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in insect embryos that result when uninfected
females are mated to infected males (cytoplasmic
incompatibility); “**? (2) inducing parthenogenesis
in infected insects (the ability of infected unfertilized
insect eggs to successfully develop into functional
female adults); “** and, (3) overriding chromosomal
sex determination in crustaceans to convert infected
genetic males into functional phenotypic females

.29 Each of these

(feminization of genetic males). ¢
reproductive effects enhances transmission of
Wolbachia to the arthropod population which is not
yet infected with Wolbachia. "'

The reproductive abnormalities induced by
Wolbachia are of interest to apply biologists, who
attempt novel means to genetically manipulate
populations of insect pests that are important for
economic and health reasons. *”’ Wolbachia-induced
cytoplasmic incompatibility can be used as a tool
for insect pest population control and as a driven
system to release desirable genotypes into mosquito
populations to control disease transmission.
For instance, in the control of transmission of vector-
borne diseases, a genetic approach would target
expression of foreign anti-parasitic or anti-viral
gene products in Wolbachia harbored by insects.
Recently, a life-shortening strain of virulent Wolbachia
(wMelPop) was transferred into Aedes aegypti, the
major mosquito vector of dengue, in order to decrease
its life span and disease transmission. @ Parasitoids
used in biological control of insects may be more
effective when infected with parthenogenesis
Wolbachia. *® Wolbachia and its hosts are ideal
candidates for studies to elucidate the mechanisms
of host-parasite relationships and the evolution of

infectious diseases, specifically host resistance,
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parasite virulence and transmission dynamics. % *"

Recently, lateral or horizontal gene transfer
(LGT or HGT) occurring between Wolbachia and
multicellular eukaryotic host genome has been

described. #**

' The presence of Wolbachia-derived
DNA sequences in a beetle ®® and a filarial nematode
#9 was investigated by screening whole-genome
shotgun data from a wide range of nematodes and
arthropods for nuclear insertions of Wolbachia DNA.
In addition, fragments of Wolbachia DNA were
identified in the introns of a previously sequenced
gene from a human filarial nematode, B. malayi ©”,
and an animal filarial nematode, Dirofilaria immitis **
However, the consequence of endosymbiont-host

LGTs has not yet been studied in detail and remains

poorly understood.

Nematode Wolbachia: mutualistic relationships

At the beginning of the 1970s, electron
microscopy studies of various filarial nematodes,
including D. immitis, B. pahangi, B. malayi and
Onchocerca volvulus, revealed the presence of

intracellular bacteria. ®**'

'In 1990s, two decades after
the discovery of Wolbachia, based on DNA sequence
data, intracellular bacteria have been identified as

%4 |In addition

being closely related to Wolbachia. *
to electron microscopy, molecular techniques were
employed for the surveys of Wolbachia are based
on PCR, followed by a sequencing technique and
immunohistochemistry. “® Although it occurs in
varying proportions between individual worms and
different developmental stages, Wolbachia are found
throughout the entire life-cycle stages of the filarial
nematode hosts. “**"**“Y Within the body of filarial

nematodes, the bacteria are restricted to the lateral
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chords of the adults and the reproductive tissues
of the female (e.g., oogonia, oocytes, embryos and
microfilariae). However, Wolbachia have not been

9 These

detected in the male reproductive system.
findings suggest that the bacteria are vertically
transmitted through the cytoplasm of the egg, and
not through the sperm. “>*"

It now is known that Wolbachia are
widespread in filarial nematodes. Of the 14 genera
so far examined, Wolbachia have been revealed
in the 8 genera of a total of 19 filarial species
(Tables 1 and 2). ®** ™2 These filarial nematodes
include, namely, B. malayi, W. bancrofti, and O.
volvulus; all these species are important to human
health; and D. immitis, which causes dog heartworm

©. 4247 Recently, Wolbachia has been

disease.
identified in plant-parasitic nematode, Radopholus
similes, and is designated to the supergroup I.
So far, the molecular functions of Wobachia in plant

tissues still remain unknown. ©?
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The presence of Wolbachia in filarial
nematodes appears to be limited to the family
Onchocercidae (Table 1). Within this family,
the positive species belong to the subfamilies
Onchocercinae and Dirofilariinae, while Wolbachia are
found to be negative for the subfamilies Waltonellinae
and Setarinae. However, there are both positive
and negative species in the Onchocercinae and
Dirofilariinae (Table 2). In these subfamilies, two
filarial species that are pathogenic to humans, Loa
loa and Mansonella perstans, as well as the rodent
filaria Acanthocheilonema viteae, the carnivore
filaria A. reconditum, the bat filaria Litomosoides
yutajensis, the deer filaria O. flexuosa, and the reptile
filaria Foleyella furcata appear to be Wolbachia

(3. 47.50%6) Based on the results of screening

free.
for Wolbachia in nematodes outside the order
Spirurida, there is no evidence of the presence of
Wolbachia. °"*® This finding is consistent with the
hypothesis that Wolbachia entered the nematode
phylum once, in an ancestral lineage of filarial

nematodes.

Table 1. Detection of Wolbachia in the genera of filarial nematodes.

Family Subfamily No. genera examined Results for Wolbachia
Positive Negative

Filariidae Filarinae 1 - 1

Onchocercidae Onchocercinae 8 5 3
Dirofilariinae 3 1 2
Waltonellinae 1 - 1
Setarinae 1 - 1
Oswaldofilariinae 1 - 1

Icosiellinae
Splendidofilariinae

Lemdaninae

o o O
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Table 2. Distribution of Wolbachia in filarial nematodes.
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Family Subfamily Genus Presence Absence
Filariidae Filarinae Filaria - F. martis
Onchocercidae Onchocercinae Brugia B. malayi -
B. pahangi
B. timori
Wuchereria W. bancrofti

Dirofilariinae

Waltonellinae
Oswaldofilariinae

Setarinae

Litomosoides

Dipetalonema
Litomosa

Onchocerca

Mansonella

Acanthocheilonema

Dirofilaria

Foleyella

Loa
Ochoterenella
Piratuba

Setaria

L. sigmodontis
brasileiensis
galizai
hamletti
gracile
westi

. volvulus

L.

L.

L.

D.

L.

@)

O. ochengi
O. gutturosa
O. gibsoni
O. lupi

O. cervicalis
M

. ozzardli

O

. iImmitis
D. repens

L. yutajensis

O. flexuosa

M. perstans
A. viteae

A. reconditum

F. furcata

L. loa
Ochoterenella sp.
P. scaffi

S. equine

S. labiatopapillosa
S. tundra
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Based on the distribution of Wolbachia, it is
placed in the taxonomy of filarial nematodes. The
hypotheses on their evolution is: (1) Wolbachia may
have been ancestrally absent from the lineages
leading to Filaria martis, Ochoterenella spp., and
Setaria spp.; (2) Wolbachia may have been
acquired at one time in the lineage leading to the
Onchocercinae/Dirofilariinae, and current negative
species in these subfamilies are the results of
secondary losses; (3) Wolbachia may have been
acquired several times along various lineages of the
Onchocercinae/Dirofilariinae; in this case, negative
species in these subfamilies may represent either a
primitive absence of the symbiosis or the effect of a
secondary loss. *" %%

Nematode Wolbachia morphology is
pleomorphic coccobacilli, appearing either as cocci
(0.3-0.8 um in diameter) or short rods (up to 0.8 um
in diameter and 1.5 um in length) “” and less than
0.2 um in size to greater than 4 um in length. “® Each
Wolbachia cell lies in an individual vacuole enveloped
by three layers of membranes. The outer layer is a
host-derived membrane, followed by the outer cell
wall of the bacteria, and the innermost layer consists
of the plasma membrane of the bacteria. “* ®”
However, a few Wolbachia cells can also be observed
to be within a host-derived vacuole. “"* Wolbachia
may divide by binary fission, the most common mode
of replication in bacteria, and possibly by a more
complicated method which is similar to the
developmental cycle of Chlamydia, a Wolbachia-
related organism. “9 This process is accompanied
by corresponding changes within the organism. They
appear to be a condensation of cytosol, formation of

dense inclusions that may coalesce and form smaller
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entities within the parent organism. The smaller
individuals will grow and develop to bacterial forms.
Evidence of Wolbachia undergoing division is always
reported in the adult female of filarial nematodes,
especially in the reproductive tissues. “"*”
Quantification of Wolbachia numbers in
different developmental stages has been studied in

“*)n blood-stage microfilariae (L1) and

B. malayi. '
the mosquito vectors larval stages (L2 and L3),
the numbers of Wolbachia remain constant with the
lowest ratios of Wolbachia/nematode DNA. However,
the Wolbachia/lnematode ratio increases dramatically
within the first week of infection of the definitive host;
the ratio is the highest here out of all life-cycle stages.
In female worms, Wolbachia copy numbers increase
as the worms mature and their ovaries and embryos
become infected. “? Further studies on the dynamics
of population levels in other filarial species are ongoing
and should serve to further define the key features of
the symbiotic association. A recent study comparing
the different forest’ and ‘'savanna’ strains of O. volvulus
found a significantly greater ratio of Wolbachial/
nematode DNA in the severe, ocular disease-causing
‘savanna’ strain, supporting the role of the Wolbachia
in the pathogenesis of ocular onchocerciasis. ©

In both Ilymphatic filariasis and on-
chocerciasis, Wolbachia have been proposed for
their ability to induce host inflammatory response

6959 Filariasis patients

and cause pathogenesis.
could be exposed to Wolbachia - either products
released by the adult or those by the larval stages
dying after chemotherapy and destroyed by the host.
Lipopolysaccharide (LPS), lipoprotein, and groEL
molecules are associated with the innate and adaptive

immune activation. They are engaged with monocyte/
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macrophage toll-like receptors (TLR2 and TLR6),
and induce proinflammatory cytokines, such as
tumor necrosis factor-alpha (TNF-Qt), interleukin-1
(IL-1), and IL-12, and specific immunoglobulins

©*%7 1n addition, free Wolbachia or

production.
Wolbachia in egg fragments are slowly released
from the uterus during the life span of the female. In
addition, the soluble Wolbachia’s products and the
small forms (elementary body analogues), may be
transported via nematode excretory canals. “?

The recent completion of genome
sequencing and the annotation of the metabolic
pathways of Wolbachia from B. malayi (wBm) have
identified important candidates for the dependency

®® In comparison with the insect

of symbiosis.
Wolbachia and related Rickettsia, the genome of
Wolbachia from B. malayiis reduced in size, a feature
common to the lifestyle of other endosymbiotic

®7) However, Wolbachia contains more

bacteria.
intact metabolic pathways, which may be important
in contributing to the welfare and fecundity of its
host. The ability to provide riboflavin, flavin adenine
dinucleotide (FAD), heme, and nucleotides is likely
the bacterial contribution, whereas the host nematode
provides amino acids required for bacterial growth
with the exception of the only amino acid synthesized
by the bacteria, meso-diaminopimelate, a major
component of peptidoglycan. ®*” Other features

72,73) and

include a common type IV secretion system. (
an abundance of ankyrin domain containing proteins,
which could regulate the host gene expression as
suggested for Ehrlichia phagocytophilia AnkA. 7™
Glutathione biosynthesis genes may be a source of
glutathione for the protection of the host nematode

from oxidative stress or immunological effector

Chula Med J

molecules. Heme from Wolbachia could be critical
to worm embryogenesis, molting, and reproduction,
which are regulated by ecdysteroid-like hormones.
6.7 Depletion of Wolbachia might therefore
stop production of these hormones and block
embryogenesis. Alternatively or in addition, Wolbachia
may be an essential source of nucleotides during
embryogenesis. Thus, the achievement of the wBm
genome provides useful information that may
increase the understanding of the molecular basis
for endosymbiosis between Wolbachia and filarial
nematodes. The novel and test drugs already
registered for use in humans, which might inhibit key
biochemical pathways in Wolbachia that could lead
to the sterility or killing of the adult worms, will be

screened for these properties. ** "#%”

Wolbachia as a novel filarial drug target

The efficacy of tetracycline and its derivative
to diminish Wolbachia, which is essential for larval
molting, adult female worm fertility, and adult survival
in those filarial species that harbour them, were shown
in several animal models of filariasis. ®” The African
Program of Onchocerciasis Control (APOC) and the
Onchocerciasis Elimination Program for the Americas
(OEPA) have used 200 mg/day doxycycline for
6 weeks in onchocerciasis patients to sterile female
worm and obtain macrofilaricidal effect. ®” In addition,
the Global Program for Elimination of Lymphatic
Filariasis (GPELF), anti-Wolbachial chemotherapy has
been used as an alternative strategy for controlling
lymphatic filariasis. In bancroftian and brugian
filariasis, 3, 4 ® 6 ®* and 8 ®” -week courses
of treatment with 100 or 200 mg/day of doxycycline

alone or in combination with (ivermectin or
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albendazole), result in a macrofilaricidal effect, a
decrease microfilaremic level, reduce Wolbachia copy
number in the microfilariae, and an abatement
in drug adverse reactions. More potent and short-
term therapy of anti-Wolbachial and anti-filarial
chemotherapeutic agents should be screened
and identified. ®*®¥ It has been suggested that
tigecycline, a new class of glycylcycline antibiotic with
similar structure to tetracycline, be tested against
experimental filarial infections. ®” Since, doxycycline
has limited use in pregnant and breastfeeding
women, and children under the age of nine ©?,
rifampicin, which has anti-Wolbachial and anti-filarial
activities could be used as an alternative regimen. **
In addition, the macrofilaricidal activity of human
lymphatic filariasis using a combination of doxycycline
and rifampicin in a 3-week course has been
studied.

There is an urgent need to discover
alternative anti-Wolbachial treatments that may be
facilitated by identification of new drug targets in this
endosymbiont. For example, in the wBm genome
analysis, it was found that this organism lacks pyruvate
kinase (PK) and may alternately employ enzyme
pyruvate phosphate dikinase (PPDK). This enzyme
converts phosphate to ATP in the glycolysis pathway
and could be inhibited by millimolar concentrations
of imidodiphosphate. "’ A Wolbachia putative
cofactor-independent phosphoglycerate mutase
(iPGM) has also been predicted and identified
from the wBm genome sequence. The iPGM protein
stimulates the transferring of the phosphoryl group
between monophosphoglycerates through a
phosphoserine intermediate. *” iPGM represents an

interesting Wolbachia drug target because it has a
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unique sequence and structure compared with the
mammal cofactor-dependent phosphoglycerate
mutase (dPGM). * The identification of wBm-PPDK
and wBm-iPGM makes these enzymes an attractive
and novel Wolbachia drug target. Recently, Wolbachia
lipoprotein biosynthesis has been proposed as a
potential chemotherapeutic target. Globomycin, a
signal peptidase Il inhibitor, was found to inhibit
Ehrlichia chaffeensis infection and lipoprotein
processing in cell cultures. ® Globomycin was also
obtained from the anti-Wolbachial drug screening
project, and the result shows that this drug could
deplete Wolbachia numbers in Wolbachia-containing
Ae. albopictus cell line. In addition, Globomycin
treatment could reduce motility and viability of
B. malayi adult females in vitro. ¢

Moreover, a discovery of anti-Wolbachial drug
and development program (A-WOL) has been
established. This program tries to discover Wolbachia
drug targets using bioinformatics tool and high-
throughput screening approaches, to test antibiotic
combinations for reduction of anti-Wolbachial
treatment time, and to identify novel antibiotics over
the currently used antibiotics. About 166 from 3,700
drugs have been filtered for in vivo screening to deliver

increased property over doxycycline. ¥

Future directions

Wolbachia of arthropods and filarial
nematodes have been extensively studied. Forinsect
Wolbachia, studies such as, Wolbachia/host protein
interactions at the molecular level | insect pest
population control and desirable genotypes of
arthropod populations spreading using Wolbachia-

induced cytoplasmic incompatibility, and age-
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modified vector populations are needed. "%

Wolbachia was found to be of medical and veterinary
importance for biological fight against vector-borne
diseases. Wolbachia could be used for population
replacement and suppression of mosquito vectors
such as Ae. aegyptithat transmits dengue and yellow
fever, Culex pipiens that transmits West Nile virus,
and Anopheles spp. that acts as the vectors

#%.99 Recently, Wolbachia lipoprotein

for malaria.
was found to be able to stimulate the inflammatory
activity and disease symptom. Moreover, the lipid Il
biosynthesis pathway was identified to be necessary
for Wolbachia cell division. It could be used as an
anti-Wolbachia target for filarial infections. "*”
Further investigations of host-filarial nematode-
Wolbachia interactions, a much shorter regimen, drug
combination, and registered drugs that could inhibit
key biochemical pathway in the Wolbachia should be
studied for anti-Wolbachia and anti-filarial activities

in controlling filariasis.
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